
Today: implementation strategies

general-purpose domain-specific
developer effort

implementation

discover  
nouns & verbs

add 
fluency

library API

indirect 
interaction

direct 
interaction

ease-of-use
design

remove  
“host flavor”

internal DSL

Last time

translate from  
DSL to host language

external DSL

Today

We can omit the . from our method calls.

Recap: Removing the host flavor

These programs are equivalent!

Recap: Removing the host flavor

each line is a statement

the entire program is one expression

Internal DSL  
case study: time

Creating a class for the time domain
package time

class Time(val hours: Int, val minutes: Int, val seconds: Int)

↑ language implementation
↓ language use

package pioneer

import time.Time

object Program extends App {
 val time1 = new Time(12, 0, 30)
 val time2 = new Time(12, 0, 30)

 println(s"The time is $time1")
 println(s"time1 == time2: ${time1 == time2}")
}

The time is time.Time@fe18270
time1 == time2: false

They give us a toString method, an equality method, and we don’t have to use new to create objects of case classes.

Case classes are about data
package time

case class Time(hours: Int, minutes: Int, seconds: Int)

↑ language implementation
↓ language use

package pioneer

import time.Time

object Program extends App {
 val time1 = Time(12, 0, 30)
 val time2 = Time(12, 0, 30)

 println(s"The time is $time1")
 println(s"time1 == time2: ${time1 == time2}")
}

The time is Time(12,0,30)
time1 == time2: true

Let’s introduce a new behavior
package time

case class Time(hours: Int, minutes: Int, seconds: Int) {
 def addSeconds(moreSeconds: Int): Time = {
 val rawSeconds = seconds + moreSeconds
 val newSeconds = rawSeconds % 60

 val rawMinutes = minutes + rawSeconds / 60
 val newMinutes = rawMinutes % 60

 val rawHours = hours + rawMinutes / 60
 val newHours = rawHours % 24

 Time(newHours, newMinutes, newSeconds)
 }
}

↑ language implementation
↓ language use

package pioneer

import time.Time

object Program extends App {
 val time1 = Time(12, 0, 30)
 val time2 = Time(12, 0, 0).addSeconds(30)

 println(s"The time is $time1")
 println(s"time1 == time2: ${time1 == time2}")
}

The time is Time(12,0,30)
time1 == time2: true

We can write a method whose name is +.

Operators are just methods!
package time

case class Time(hours: Int, minutes: Int, seconds: Int) {
 def addSeconds(moreSeconds: Int): Time = {
 …
 }

 def +(moreSeconds: Int): Time = addSeconds(moreSeconds)
}

↑ language implementation
↓ language use

package pioneer

import time.Time

object Program extends App {
 val time1 = Time(12, 0, 30)
 val time2 = Time(12, 0, 0).+(30)

 println(s"The time is $time1")
 println(s"time1 == time2: ${time1 == time2}")
}

The time is Time(12,0,30)
time1 == time2: true

For methods that take one argument, we can remove the parentheses from the call.

Removing the host flavor
package time

case class Time(hours: Int, minutes: Int, seconds: Int) {
 def addSeconds(moreSeconds: Int): Time = {
 …
 }

 def +(moreSeconds: Int): Time = addSeconds(moreSeconds)
}

↑ language implementation
↓ language use

package pioneer

import time.Time

object Program extends App {
 val time1 = Time(12, 0, 30)
 val time2 = Time(12, 0, 0) + 30

 println(s"The time is $time1")
 println(s"time1 == time2: ${time1 == time2}")
}

The time is Time(12,0,30)
time1 == time2: true

We can add seconds to time; but we can’t add time to seconds.

Uh oh, there’s a problem
package time

case class Time(hours: Int, minutes: Int, seconds: Int) {
 def addSeconds(moreSeconds: Int): Time = {
 …
 }

 def +(moreSeconds: Int): Time = addSeconds(moreSeconds)
}

↑ language implementation
↓ language use

package pioneer

import time.Time

object Program extends App {
 val time1 = Time(12, 0, 30)
 val time2 = 30 + Time(12, 0, 0)

 println(s"The time is $time1")
 println(s"time1 == time2: ${time1 == time2}")
}

The time is Time(12,0,30)
time1 == time2: true

error!

(Seeming to) add new behavior to built-in objects (such as Ints)

Literal extension
package time

case class Time(hours: Int, minutes: Int, seconds: Int) {
 …
}

object Time {
 implicit class IntTime(val seconds: Int) {
 def +(time: Time): Time = time + seconds
 }
}

↑ language implementation
↓ language use

package pioneer

import time.Time

object Program extends App {
 val time1 = Time(12, 0, 30)
 val time2 = 30 + Time(12, 0, 0)

 println(s"The time is $time1")
 println(s"time1 == time2: ${time1 == time2}")
}

The time is Time(12,0,30)
time1 == time2: true

now it works!

implicit conversion  
from Int to IntTime

Traits are another way to extend programs, by “mixing in” data and behavior.

Traits
package time

trait RichTime {
 val midnight = Time(0, 0, 0)
 val noon = Time(12, 0, 0)
}

↑ language implementation
↓ language use

package pioneer

import time.{RichTime, Time}

object Program extends App with RichTime {
 val time1 = noon
 val time2 = 30 + noon

 println(s"The time is $time1")
 println(s"time1 == time2: ${time1 == time2}")
}

The time is Time(12,0,30)
time1 == time2: true

adds vals from  
RichTime to Program

A way to add more fluency to the time domain

Postfix operators
package time

trait RichTime {
 val midnight = Time(0, 0, 0)
 val noon = Time(12, 0, 0)

 implicit class TimeUnits(val seconds: Int) {
 def minutes: Int = seconds * 60
 }
}

↑ language implementation
↓ language use

package pioneer

import time.{RichTime, Time}
import scala.language.postfixOps

object Program extends App with RichTime {
 val time1 = Time(12, 30, 0)
 val time2 = noon + (30 minutes)

 println(s"The time is $time1")
 println(s"time1 == time2: ${time1 == time2}")
}

The time is Time(12,0,30)
time1 == time2: true

DSL implementation strategies

general-purpose domain-specific
developer effort

implementation

discover  
nouns & verbs

add 
fluency

library API

indirect 
interaction

direct 
interaction

ease-of-use
design

remove  
“host flavor”

internal DSL

translate from  
DSL to host language

external DSL

we are here

Most general-purpose languages support these features.

Techniques for adding fluency

names
including Unicode

sin(Θ)
ASK: If the DSL supports Unicode, how will the user write programs?

whitespace

computer();
 processor();
 cores(2);
 disk();
 size(150);

function
composition

computer(
 processor(
 cores(2)
),
 disk(
 size(150)
)
);

method
chaining

computer()
 .processor()
 .cores(2)
 .disk()
 .size(150)
 .end();

These features tend to be language-specific. Some languages support this ability more than others.

Techniques for hiding the host language

infix operators
set1 union set2  

salaries map giveRaise

(re-)defining
operators

set1 ∪ set2

set1 + set2
Different host languages gives us different  

amounts of control over precedence and associativity.

pre- and postfix
operators

~1
i++

literal extension 3 little pigs

DSL implementation strategies

general-purpose domain-specific
developer effort

implementation

discover  
nouns & verbs

add 
fluency

library API

indirect 
interaction

direct 
interaction

ease-of-use
design

remove  
“host flavor”

internal DSL

translate from  
DSL to host language

external DSL

we are here

