
Recall: It’s a spectrum, not a binary

How precise are our answers to these questions?
1. Is it a programming language?
2. What is the focus? What does the domain expert describe?
3. What is easy, difficult, impossible in this language? 

(relative to a general-purpose programming language)

“GPPL-like” “DSL-like”

Today: Implementation techniques

general-purpose domain-specific
developer effort

implementation

discover  
nouns & verbs

add 
fluency

library API

…

indirect 
interaction

direct 
interaction

ease-of-use
design

Assignment 2

remove  
“host flavor”

internal DSL

Today

First: some terminology

• Interface: what a piece of code can do
An interface tells the user what the code can do, and doesn’t require
the user to know how the code does it.

• Implementation: how a piece of code works
Users shouldn’t need to know or rely on this information, to use the
code.

def flipHorizontal(inputFilename: String, outputFilename: String): Boolean = {
 val image = loadImage(inputFilename)

 // create a new, empty image to copy pixels into
 val width = image.getWidth
 val height = image.getHeight
 val imageType = image.getType
 val result = new BufferedImage(width, height, imageType)

 // copy the pixels over, column-by-column, from right to left
 for (column <- 0 until width)
 for (row <- 0 until height)
 result.setRGB(column, row, image.getRGB(width - column - 1, row))

 saveImage(result, outputFilename)
}

Interface

Implementation

Our library, before the assignment

flipHorizontal(inputFilename, outputFilename)

flipVertical(inputFilename, outputFilename)

rotateLeft(inputFilename, outputFilename)

rotateRight(inputFilename, outputFilename)

grayScale(inputFilename, outputFilename)

bird.png drib.png

flipHorizontal(“bird.png”, “drib.png”)

photo credit: Natasha Miller @ unsplash

https://unsplash.com/photos/DFCnzrSYqpQ

Our library, after the assignment

loadImage(filename) => picture

flipHorizontal(picture) => picture

flipVertical(picture) => picture

rotateLeft(picture) => picture

rotateRight(picture) => picture

grayScale(picture) => picture

saveImage(picture, filename)

bird.png drib.png

saveImage(flipHorizontal(loadImage(“bird.png”)), “drib.png”)

photo credit: Natasha Miller @ unsplash

This library is more fluent  

because it is compositional.

https://unsplash.com/photos/DFCnzrSYqpQ

They require different implementation techniques.

Fluency: nesting vs chaining

object PictureProgram extends App {
 val image = load(resource("/image.png"))

 image.flipHorizontal()
 .grayScale()
 .rotateLeft()
 .save("output0.png")
}

object PictureProgram extends App {
 val image = load(resource("/image.png"))
 val result =
 rotateLeft(
 grayScale(
 flipHorizontal(image)
)
)
 save(result, "output0.png")
}

Nested Calls
implemented with  

composable functions

Chained calls
implemented with  

composable methods

Program 
= 

Data + Operations
global variables  

& parameters
functions

Object 
= 

Data + Operations
field values method definitions

• An object is ready to use:
• All its fields have values.
• All its methods have been defined.

• An object can access its own fields & methods.

• Others can access an object through its interface.

Class 
= 

Data + Operations
field declarations method definitions

• A class describes how to make an object.

• We make an object by combining the description
from the class with specific values for the fields.

Abstraction in object-oriented programming

class
describes data & defines behavior

object
all data & behavior available

disclaimer: This diagram doesn’t capture all the nuances of the abstract / concrete spectrum in object-oriented programming. Also, it uses generic terms such as
“interface” that may not correspond to terms used by specific languages (e.g., Java).

method
interface & implementation

method
Is callable

abstract
no data or behavior is available

all data & behavior is available

concrete

field
has a value

field
declaration (name & type)

interface
describes behavior

method
interface

Abstraction in Scala: classes & objects

class
describes data & defines behavior

object
all data & behavior available

disclaimer: This diagram doesn’t capture all the nuances of the abstract / concrete spectrum in Scala.

method (def)
interface & implementation

method (def)
interface & implementation

abstract
no data or behavior is available

all data & behavior is available

concrete

field (val, var)
declaration & value

field (val, var)
declaration (name & type)

First step: Picture objects with methods

object PictureProgram extends App {
 val image = load(resource("/image.png"))
 image.flipHorizontal()
 image.grayScale()
 image.rotateLeft()
 image.save("output0.png")
}

object PictureProgram extends App {
 val image = load(resource("/image.png"))
 val result =
 rotateLeft(
 grayScale(
 flipHorizontal(image)
)
)
 save(result, "output0.png")
}

Currently: functions over parameters
A collection of functions,
over a BufferedImage 
parameter, inside an
object.

OOP: methods over fields

mutable BufferedImage field

class with methods

What about load?!

OOP: methods over fields

“Companion object”

Let’s make our users a little happier

“Factory” (creates objects)

no new!

Chaining is compositional fluency in OOP.

Fluency: chaining in OOP

object PictureProgram extends App {
 val image = load(resource("/image.png"))
 image.flipHorizontal()
 image.grayScale()
 image.rotateLeft()
 image.save("output0.png")
}

object PictureProgram extends App {
 val image = load(resource("/image.png"))

 image.flipHorizontal()
 .grayScale()
 .rotateLeft()
 .save("output0.png")
}

Implementation techniques

general-purpose domain-specific
developer effort

implementation

discover  
nouns & verbs

add 
fluency

library API

…

indirect 
interaction

direct 
interaction

ease-of-use
design

we are here

remove  
“host flavor”

internal DSL

How to make it look a little less like Scala?

Removing the host-language flavor

object PictureProgram extends App {
 load(resource("/image.png"))
 .flipHorizontal()
 .grayScale()
 .rotateLeft()
 .save(“output0.png")
}

object PictureProgram extends App {(
 load(resource("/image.png"))
 flipHorizontal()
 grayScale()
 rotateLeft()
 save("output0.png")
)}

how we’d like  
the library to work

how the library  
works now

We can omit the . from our method calls.

Scala method calls

These programs are equivalent!

Remember: Scala infers semicolons

each line is a statement

the entire program is one expression

Implementation techniques

general-purpose domain-specific
developer effort

implementation

discover  
nouns & verbs

add 
fluency

library API

…

indirect 
interaction

direct 
interaction

ease-of-use
design

we are here

remove  
“host flavor”

internal DSL

